Validation of an Automated Seizure Detection System on Healthy Babies - Histogram-based Energy Normalization for Montage Mismatch Compensation

نویسندگان

  • Andrey Temko
  • Irina Korotchikova
  • William P. Marnane
  • Gordon Lightbody
  • Geraldine B. Boylan
چکیده

Seizures in newborn babies are commonly caused by problems such as lack of oxygen, haemorrhage, meningitis, infection and strokes. The aim of an automated neonatal seizure detection system is to assist clinical staff in a neonatal intensive care unit to interpret the EEG. In this work, the automated neonatal seizure detection system is validated on a set of healthy patients and its performance is compared to the performance obtained on sick patients reported previously. The histogram-based energy normalization technique is designed and applied to EEG signals from healthy patients to cope with montage mismatch. The results on healthy babies compares favourably to those obtained on sick babies. Several useful observations are made which were not possible to obtain by testing on sick babies only such as a practically useful range of probabilistic thresholds, minimum detection duration restriction, and an influence of the database statistics on the system performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain

This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Validation of an automated seizure detection algorithm for term neonates

OBJECTIVE The objective of this study was to validate the performance of a seizure detection algorithm (SDA) developed by our group, on previously unseen, prolonged, unedited EEG recordings from 70 babies from 2 centres. METHODS EEGs of 70 babies (35 seizure, 35 non-seizure) were annotated for seizures by experts as the gold standard. The SDA was tested on the EEGs at a range of sensitivity s...

متن کامل

Combination of SPLICE and Feature Normalization for Noise Robust Speech Recognition

It is well-known that the performance of automatic speech recognition (ASR) systems are easily affected by acoustic mismatch between training and testing conditions. This mismatch is often caused by various kinds of environmental noise or distortion. To reduce the effect of mismatch, feature normalization, feature enhancement, model adaptation, etc. have been studied intensively. Cepstral mean ...

متن کامل

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010